Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(2): e8521, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35154645

RESUMO

Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive "fast" types at one end of the spectrum to less fecund, long-lived, shy, plastic "slow" types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)-a species with distinct seasonal life history trajectories-we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life.

2.
Biol Rev Camb Philos Soc ; 95(4): 1073-1096, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627362

RESUMO

Organismal movement is ubiquitous and facilitates important ecological mechanisms that drive community and metacommunity composition and hence biodiversity. In most existing ecological theories and models in biodiversity research, movement is represented simplistically, ignoring the behavioural basis of movement and consequently the variation in behaviour at species and individual levels. However, as human endeavours modify climate and land use, the behavioural processes of organisms in response to these changes, including movement, become critical to understanding the resulting biodiversity loss. Here, we draw together research from different subdisciplines in ecology to understand the impact of individual-level movement processes on community-level patterns in species composition and coexistence. We join the movement ecology framework with the key concepts from metacommunity theory, community assembly and modern coexistence theory using the idea of micro-macro links, where various aspects of emergent movement behaviour scale up to local and regional patterns in species mobility and mobile-link-generated patterns in abiotic and biotic environmental conditions. These in turn influence both individual movement and, at ecological timescales, mechanisms such as dispersal limitation, environmental filtering, and niche partitioning. We conclude by highlighting challenges to and promising future avenues for data generation, data analysis and complementary modelling approaches and provide a brief outlook on how a new behaviour-based view on movement becomes important in understanding the responses of communities under ongoing environmental change.


Assuntos
Migração Animal/fisiologia , Biodiversidade , Fenômenos Ecológicos e Ambientais , Animais , Simulação por Computador , Estágios do Ciclo de Vida , Modelos Biológicos , Estações do Ano
3.
Animals (Basel) ; 9(6)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146468

RESUMO

Animal personality may affect an animal's mobility in a given landscape, influencing its propensity to take risks in an unknown environment. We investigated the mobility of translocated common voles in two corridor systems 60 m in length and differing in width (1 m and 3 m). Voles were behaviorally phenotyped in repeated open field and barrier tests. Observed behavioral traits were highly repeatable and described by a continuous personality score. Subsequently, animals were tracked via an automated very high frequency (VHF) telemetry radio tracking system to monitor their movement patterns in the corridor system. Although personality did not explain movement patterns, corridor width determined the amount of time spent in the habitat corridor. Voles in the narrow corridor system entered the corridor faster and spent less time in the corridor than animals in the wide corridor. Thus, landscape features seem to affect movement patterns more strongly than personality. Meanwhile, site characteristics, such as corridor width, could prove to be highly important when designing corridors for conservation, with narrow corridors facilitating faster movement through landscapes than wider corridors.

4.
Oecologia ; 189(3): 647-660, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30826867

RESUMO

Personality-dependent space use and movement might be crucially influencing ecological interactions, giving way to individual niche specialization. This new approach challenges classical niche theory with potentially great ecological consequences, but so far has only scarce empirical support. Here, we investigated if and how consistent inter-individual differences in behavior predict space use and movement patterns in free-ranging bank voles (Myodes glareolus) and thereby contribute to individual niche specialization. Individuals were captured and marked from three different subpopulations in North-East Germany. Inter-individual differences in boldness and exploration were quantified via repeated standardized tests directly in the field after capture. Subsequently, space use and movement patterns of a representative sample of the behavioral variation (n = 21 individuals) were monitored via automated VHF telemetry for a period of four days, yielding on average 384 locations per individual. Bolder individuals occupied larger home ranges and core areas (estimated via kernel density analyses), moved longer distances, spatially overlapped with fewer conspecifics and preferred different microhabitats based on vegetation cover compared to shyer individuals. We found evidence for personality-dependent space use, movement, and occupation of individual spatial niches in bank voles. Thus, besides dietary niche specialization also spatial dimensions of ecological niches vary among individuals within populations, which may have important consequences for ecological interactions within- and between species.


Assuntos
Ecologia , Personalidade , Animais , Ecossistema , Comportamento de Retorno ao Território Vital , Movimento
5.
Immunogenetics ; 68(6-7): 429-437, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27225422

RESUMO

Strong spatiotemporal variation in population size often leads to reduced genetic diversity limiting the adaptive potential of individual populations. Key genes of adaptive variation are encoded by the immune genes of the major histocompatibility complex (MHC) playing an essential role in parasite resistance. How MHC variation persists in rodent populations that regularly experience population bottlenecks remains an important topic in evolutionary genetics. We analysed the consequences of strong population fluctuations on MHC class II DRB exon 2 diversity in two distant common vole (Microtus arvalis) populations in three consecutive years using a high-throughput sequencing approach. In 143 individuals, we detected 25 nucleotide alleles translating into 14 unique amino acid MHC alleles belonging to at least three loci. Thus, the overall allelic diversity and amino acid distance among the remaining MHC alleles, used as a surrogate for the range of pathogenic antigens that can be presented to T-cells, are still remarkably high. Both study populations did not show significant population differentiation between years, but significant differences were found between sites. We concluded that selection processes seem to be strong enough to maintain moderate levels of MHC diversity in our study populations outcompeting genetic drift, as the same MHC alleles were conserved between years. Differences in allele frequencies between populations might be the outcome of different local parasite pressures and/or genetic drift. Further understanding of how pathogens vary across space and time will be crucial to further elucidate the mechanisms maintaining MHC diversity in cyclic populations.


Assuntos
Arvicolinae/genética , Deriva Genética , Variação Genética/genética , Genética Populacional , Complexo Principal de Histocompatibilidade/genética , Seleção Genética/genética , Animais , Frequência do Gene , Filogenia
6.
PLoS One ; 10(5): e0126011, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25954967

RESUMO

Bioturbation contributes to soil formation and ecosystem functioning. With respect to the active transport of matter by voles, bioturbation may be considered as a very dynamic process among those shaping soil formation and biogeochemistry. The present study aimed at characterizing and quantifying the effects of bioturbation by voles on soil water relations and carbon and nitrogen stocks. Bioturbation effects were examined based on a field set up in a luvic arenosol comprising of eight 50 × 50 m enclosures with greatly different numbers of common vole (Microtus arvalis L., ca. 35-150 individuals ha-1 mth-1). Eleven key soil variables were analyzed: bulk density, infiltration rate, saturated hydraulic conductivity, water holding capacity, contents of soil organic carbon (SOC) and total nitrogen (N), CO2 emission potential, C/N ratio, the stable isotopic signatures of 13C and 15N, and pH. The highest vole densities were hypothesized to cause significant changes in some variables within 21 months. Results showed that land history had still a major influence, as eight key variables displayed an additional or sole influence of topography. However, the δ15N at depths of 10-20 and 20-30 cm decreased and increased with increasing vole numbers, respectively. Also the CO2 emission potential from soil collected at a depth of 15-30 cm decreased and the C/N ratio at 5-10 cm depth narrowed with increasing vole numbers. These variables indicated the first influence of voles on the respective mineralization processes in some soil layers. Tendencies of vole activity homogenizing SOC and N contents across layers were not significant. The results of the other seven key variables did not confirm significant effects of voles. Thus overall, we found mainly a first response of variables that are indicative for changes in biogeochemical dynamics but not yet of those representing changes in pools.


Assuntos
Ecossistema , Meio Ambiente , Solo/química , Animais , Arvicolinae/metabolismo , Carbono/química , Carbono/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Clima , Nitrogênio/química , Nitrogênio/metabolismo , Poaceae/química , Poaceae/metabolismo , Água/química
7.
BMC Ecol ; 13: 49, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24314274

RESUMO

BACKGROUND: Animals show consistent individual behavioural patterns over time and over situations. This phenomenon has been referred to as animal personality or behavioural syndromes. Little is known about consistency of animal personalities over entire life times. We investigated the repeatability of behaviour in common voles (Microtus arvalis) at different life stages, with different time intervals, and in different situations. Animals were tested using four behavioural tests in three experimental groups: 1. before and after maturation over three months, 2. twice as adults during one week, and 3. twice as adult animals over three months, which resembles a substantial part of their entire adult life span of several months. RESULTS: Different behaviours were correlated within and between tests and a cluster analysis showed three possible behavioural syndrome-axes, which we name boldness, exploration and activity. Activity and exploration behaviour in all tests was highly repeatable in adult animals tested over one week. In animals tested over maturation, exploration behaviour was consistent whereas activity was not. Voles that were tested as adults with a three-month interval showed the opposite pattern with stable activity but unstable exploration behaviour. CONCLUSIONS: The consistency in behaviour over time suggests that common voles do express stable personality over short time. Over longer periods however, behaviour is more flexible and depending on life stage (i.e. tested before/after maturation or as adults) of the tested individual. Level of boldness or activity does not differ between tested groups and maintenance of variation in behavioural traits can therefore not be explained by expected future assets as reported in other studies.


Assuntos
Arvicolinae/fisiologia , Comportamento Animal , Comportamento Exploratório , Animais , Análise por Conglomerados , Feminino , Masculino , Personalidade , Reprodutibilidade dos Testes , Fatores de Tempo
8.
BMC Ecol ; 13: 43, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24238069

RESUMO

BACKGROUND: Short lived, iteroparous animals in seasonal environments experience variable social and environmental conditions over their lifetime. Animals can be divided into those with a "young-of-the-year" life history (YY, reproducing and dying in the summer of birth) and an "overwinter" life history (OW, overwintering in a subadult state before reproducing next spring).We investigated how behavioural patterns across the population were affected by season and sex, and whether variation in behaviour reflects the variation in life history patterns of each season. Applications of pace-of-life (POL) theory would suggest that long-lived OW animals are shyer in order to increase survival, and YY are bolder in order to increase reproduction. Therefore, we expected that in winter and spring samples, when only OW can be sampled, the animals should be shyer than in summer and autumn, when both OW and YY animals can be sampled.We studied common vole (Microtus arvalis) populations, which express typical, intra-annual density fluctuation. We captured a total of 492 voles at different months over 3 years and examined boldness and activity level with two standardised behavioural experiments. RESULTS: Behavioural variables of the two tests were correlated with each other. Boldness, measured as short latencies in both tests, was extremely high in spring compared to other seasons. Activity level was highest in spring and summer, and higher in males than in females. CONCLUSION: Being bold in laboratory tests may translate into higher risk-taking in nature by being more mobile while seeking out partners or valuable territories. Possible explanations include asset-protection, with OW animals being rather old with low residual reproductive value in spring. Therefore, OW may take higher risks during this season. Offspring born in spring encounter a lower population density and may have higher reproductive value than offspring of later cohorts. A constant connection between life history and animal personality, as suggested by the POL theory, however, was not found. Nevertheless, correlations of traits suggest the existence of animal personalities. In conclusion, complex patterns of population dynamics, seasonal variation in life histories, and variability of behaviour due to asset-protection may cause complex seasonal behavioural dynamics in a population.


Assuntos
Arvicolinae/fisiologia , Comportamento Animal , Estações do Ano , Animais , Feminino , Longevidade , Masculino , Densidade Demográfica , Reprodução , Assunção de Riscos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA